• The Practitioner

Prompt investigation improves outcomes for kidney cancer

Hannon É, Maxwell AP. Prompt investigation improves outcomes for kidney cancer. *Practitioner* Feb 2018;262(1812):17-20

> Dr Éadaoin Hannon MBChB MRCP Specialist Registrar in Nephrology

Professor Alexander P. Maxwell Consultant Nephrologist Regional Nephrology Unit, Belfast City Hospital, Belfast, UK

©Practitioner Medical Publishing Ltd. Reprint orders to *The Practitioner*, 10 Fernthorpe Road, London SW16 6DR, United Kingdom. Telephone: +44 (0)20 8677 3508 www.thepractitioner.co.uk

Prompt investigation improves outcomes for kidney cancer

AUTHORS Dr Éadaoin Hannon

MBChB MRCP Specialist Registrar in Nephrology

Professor Alexander P. Maxwell Consultant Nephrologist

Regional Nephrology Unit, Belfast City Hospital, Belfast, UK

FIGURE 1 Histological specimen demonstrating

clear cell renal

How do patients present in primary care?

KIDNEY CANCER IS THE SEVENTH MOST COMMON CANCER IN THE UK, ACCOUNTING FOR 3% OF

all new cases in 2015.1

Incidence rates for kidney cancer are projected to rise by 26% between 2014 and 2035, to 32 cases per 100,000 people per annum.² This prediction reflects both an ageing population, 50% of new kidney cancer cases in the UK are diagnosed in people aged 70 and over,¹ and the rising prevalence of obesity, a recognised risk factor for cancer.

Renal cell carcinoma (RCC) is the focus of this article and accounts for 80% of kidney cancers, of which clear

What investigations should be carried out?

cell (ccRCC), see figure 1 above, is the main subtype (around 75%).¹³ There is a male preponderance in a ratio of 3:2.⁴ The diagnosis of kidney cancer can

'More than 8 in 10 patients with an early stage diagnosis will survive their disease for at least five years'

What are the treatment options available?

be challenging because of its varied and non-specific symptoms and limited early warning signs. More than half of RCCs are detected incidentally^{3,4} on radiological imaging reflecting its often occult presentation.

Nevertheless, it is recognised that a GP referral is the most common route to diagnosing kidney cancer.¹ With a high level of clinical suspicion and prompt investigation, kidney cancer can be diagnosed at an early stage and this is associated with improved survival. More than 8 in 10 patients with an early stage diagnosis will survive their disease for at least five years but this falls to 1 in 10 for patients with late stage kidney cancer at diagnosis.¹

Table 1

Presentations of kidney cancer

Local	Constitutional	Biochemical	Incidental
Haematuria Flank pain Loin mass	Weight loss Pyrexia and/or night sweats	Anaemia Raised ESR or CRP Polycythaemia Hypercalcaemia	Mass on USS/CT Family history Hypertension Right-sided varicocoele

CLINICAL FEATURES

Primary care consultation may be triggered by one of the varied presentations outlined in table 1, above.

RCC should be suspected in the presence of:

 Localising symptoms such as flank pain, a loin mass or haematuria
 Constitutional upset including weight loss, pyrexia and/or night sweats
 Unexplained laboratory test results

Abnormal test results in a symptomatic patient may include anaemia and a raised ESR or C-reactive protein in the absence of infection. Paraneoplastic syndromes are found in approximately 30% of patients with symptomatic RCC⁴ and are caused by secretion of tumour-derived hormones. These syndromes can be associated with polycythaemia (erythropoietin), hypercalcaemia (parathyroid hormone related peptide) or hypertension (renin).

'Between 25 and 31% of individuals with kidney cancer will have metastatic disease at diagnosis'

Between 25 and 31% of individuals with kidney cancer will have metastatic disease at diagnosis¹ and may present with dyspnoea, persistent cough, haemoptysis, bone pain, pathological fracture or lymphadenopathy. Local tumour spread into the left renal vein may result in a non-reducing varicocoele and extensive tumour involvement within the inferior vena cava may cause bilateral leg oedema.^{5,6}

RISK FACTORS Lifestyle

Recognised risk factors exist for RCC, see table 2, above right. Smoking, obesity and hypertension are common risk factors and all three demonstrate a dose-response relationship with the relative risk of RCC.^{78,9} These risk factors are potentially modifiable and can be targeted in primary care and through public health promotion. Protective lifestyle factors include physical activity, moderate alcohol intake and consumption of cruciferous (cabbage-like) vegetables.⁴

Environmental

RCC is not a typical occupational disease¹⁰ however exposure to trichloroethylene (metal degreaser) has been implicated. Aniline dyes, used in textile, rubber and plastic industries predispose to renal pelvis transitional cell carcinomas rather than RCCs.

Acquired cystic kidney disease (ACKD) occurs in chronic renal failure from any aetiology. Malignant cyst transformation is a recognised complication of ACKD with a 40-fold increased risk compared with the general population.¹¹ Thus there should be a higher index of suspicion for RCC in chronic dialysis and renal transplant recipients who are at increased risk of RCC in their native kidneys. Inherited autosomal dominant polycystic kidney disease does not appear to be a risk factor for RCC.

Genetic

Around 2-3% of all RCC are due to a recognised hereditary syndrome. There is a two-fold increase in risk of RCC in those with an affected firstdegree relative.¹⁰ Several hereditary renal cancer syndromes exist¹² and those specific to ccRCC include: von Hippel-Lindau syndrome type 1/type 2B (retinal, central nervous system and renal tumours); tuberous sclerosis complex (developmental delay, epilepsy with central nervous system, skin and renal hamartomas); and familial ccRCC for which the genetic mutation is unknown.⁶

These syndromes have an autosomal dominant inheritance pattern and family members at risk should be

Table 2

Risk factors for renal cell carcinoma

- Smoking
- Obesity
- Hypertension
- End-stage renal disease (acquired kidney cyst disease)
- First-degree relative affected
- Genetic cancer syndrome
- Exposure to trichloroethylene, cadmium

counselled to consider relevant clinical and genetic testing.^{10,12}

INVESTIGATIONS

Ultrasound is a useful initial screening tool when clinical suspicion of RCC is high (e.g. loin pain, flank mass, haematuria or constitutional symptoms). This should be arranged as a red flag investigation. During a consultation other useful simple tests include a urinalysis, full blood picture, ESR, bone profile, liver function tests and an electrolyte profile.

As a test, urinalysis can be of value in unravelling the possible aetiology of visible and non-visible haematuria. Urinary tract infection (UTI) is suggested by the coexistence of leukocytes ± nitrites on dipstick testing. The presence of coexisting proteinuria may suggest an intrinsic renal glomerular pathology. A spot albumin: creatinine ratio will quantify any proteinuria in this setting. However, importantly, haematuria in the absence of co-existing proteinuria suggests a possible underlying structural abnormality in the kidneys, ureters or bladder that may need further evaluation through ultrasound and cystoscopy.

Visible haematuria should trigger suspicion for urological malignancy. Prostate and bladder malignancy are outside the scope of this article. NICE has updated guidance on referral to secondary care for suspected renal and bladder cancers, summarised in table 3, opposite. It is recommended that patients aged 45 years and over with visible haematuria that is unexplained, present in the absence of UTI or persists/recurs after treatment of UTI should be referred urgently for an appointment within two weeks.13 However, younger patients can have earlier onset of disease. Clinicians should always exercise their own clinical judgement when deciding which patients to refer.

key points

Dr Phillip Bland

Former GP, Dalton-in-Furness, UK

Kidney cancer is the seventh most common cancer in

the UK, accounting for 3% of all new cases in 2015. Incidence rates for kidney cancer are projected to rise by 26% between 2014 and 2035, to 32 cases per 100,000 people per annum. Renal cell carcinoma (RCC) accounts for 80% of kidney cancers, of which clear cell (ccRCC) is the main subtype. There is a male preponderance in a ratio of 3:2.

Smoking, obesity and hypertension are common risk

factors and all three demonstrate a dose-response relationship with the relative risk of RCC. Although RCC is not a typical occupational disease, exposure to trichloroethylene (metal degreaser) has been implicated. Malignant cyst formation may occur in chronic renal failure patients with acquired kidney cyst disease. There is a two-fold increase in risk of RCC in those with an affected first-degree relative, and 2-3% of RCC cases are due to a recognised hereditary syndrome.

More than half of RCCs are detected incidentally on

radiological imaging reflecting its often occult presentation. Nevertheless, it is recognised that a GP referral is the most common route to diagnosing kidney cancer. RCC should be suspected in the presence of: localising symptoms such as flank pain, a loin mass or haematuria; constitutional upset including weight loss, pyrexia and/or night sweats; or unexplained test results.

Paraneoplastic syndromes are found in around 30%

of patients with symptomatic RCC and are caused by secretion of tumour-derived hormones. These syndromes can be associated with polycythaemia (erythropoietin), hypercalcaemia (parathyroid hormone related peptide) or hypertension (renin). Between 25 and 31% of individuals with kidney cancer will have metastatic disease at diagnosis and may present with dyspnoea, persistent cough, haemoptysis, bone pain, pathological fracture or lymphadenopathy.

NICE recommends that patients aged \geq 45 years with

unexplained visible haematuria in the absence of UTI, or visible haematuria which persists or recurs after successful treatment of UTI should be referred urgently for an appointment within two weeks. For the subtler presentations of RCC, basic blood and urine testing, in conjunction with ultrasound, can guide secondary care referral. The range of treatments, both surgical and systemic, is expanding and requires a coordinated approach between primary and secondary care. For localised disease, particularly when tumour size is < 7 cm, there has been a move towards nephron sparing surgery in the form of partial nephrectomy. However, radical nephrectomy for more advanced RCC as an attempt at curative therapy remains the best option. Patients with advanced or metastatic RCC may be treated with targeted systemic therapy which modulates molecular pathways that typically promote tumour growth, or immunotherapy which triggers an immune response that destroys cancer cells.

CT or MR imaging will be undertaken in secondary care following an initial abnormal ultrasound. This gives useful information on tumour extension locally, the appearance of the contralateral kidney and aids staging through identification of metastases.⁴

TREATMENT

Surgery

For localised (kidney-limited) disease, particularly when tumour size is < 7 cm, there has been a move toward nephron sparing surgery in the form of partial nephrectomy, however, tumour position in the kidney along with patient choice and consideration of comorbidity will dictate the suitability of such a procedure.^{4,6,14}

If feasible, nephron sparing surgery is also preferred for management of hereditary RCC due to increased risk of future tumours. For more advanced RCC staging with localised invasion of adjacent structure (adrenal tissue, vena cava below diaphragm and not beyond Gerota's fascia) radical nephrectomy remains the best option for an attempt at curative therapy. Following surgical resection, 20-30% will experience a relapse often in the form of pulmonary metastases¹⁴ and therefore active interval radiological surveillance is required.

Other options include radiofrequency ablation and cryoablation which may be preferable for renal cortical tumours < 3-5 cm; where there is a solitary kidney or chronic kidney disease; known hereditary/bilateral RCC; or in frail patients unfit for surgery.^{3,6} Sometimes interval surveillance (watchful waiting) may be deemed appropriate if the tumour is small and growing slowly. Embolisation for symptom control (haematuria and/or pain) can be undertaken in those unfit for surgery or with non-resectable cancer.⁴

Targeted systemic therapy and immunotherapy

Targeted systemic therapy modulates molecular pathways that typically promote tumour growth. In ccRCC it is recognised that a mutation results in the production of cytokines stimulating angiogenesis. Tyrosine kinase inhibitors (TKIs) inhibit vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) which in turn prevents tumour cell proliferation and development of tumour blood vessels. The TKIs sunitinib, pazopanib, and sorafenib are currently approved by NICE for treatment of advanced and metastatic RCC.^{16,17} In 2015, NICE recommended a multitargeted TKI inhibitor, axitinib, for treatment in advanced RCC after failure of prior systemic treatment.18 Temsirolimus and everolimus are mammalian target of rapamycin (mTOR) inhibitors that can be used in the management of advanced RCC. mTOR inhibitors prevent tumour cell division and blood vessel growth in tumours.

Immunotherapy triggers an immune response that destroys the cancer cells. Monoclonal antibodies directed at VEGF are used in the treatment of

Table 3

Summary of NICE recommendations for referral for suspected renal or bladder cancer (adapted from NG12)¹³

Renal cancer

Refer patients using a suspected cancer pathway referral (for an appointment within 2 weeks) for renal cancer if they are aged 45 and over and have:

- Unexplained visible haematuria without urinary tract infection (UTI) or
- Visible haematuria that persists or recurs after successful treatment of UTI

Bladder cancer

Refer patients using a suspected cancer pathway referral (for an appointment within 2 weeks) for bladder cancer if they are:

- Aged 45 and over and have:
- unexplained visible haematuria without UTI or
- visible haematuria that persists or recurs after successful treatment of UTI or
 Aged 60 and over and have unexplained non visible haematuria and either
- dysuria or a raised white cell count on a blood test

• Consider non-urgent referral for bladder cancer in people aged 60 and over with recurrent or persistent unexplained UTI

SYMPOSIUMRENAL MEDICINE KIDNEY CANCER

advanced/metastatic RCC. Bevacizumab received NICE approval in 2009¹⁶ but is no longer recommended as a first-line treatment. Nivolumab, a fully human antibody that blocks ligand activation of the programmed death receptor 1 (PD-1) restores cellular immunity and is the only treatment that has shown overall survival benefit in patients who have been previously treated for advanced RCC.¹⁵ NICE published guidance on this therapy in 2016.¹⁹

Therapeutic options continue to expand and the selection of an appropriate treatment plan is often individualised to the patient taking into account comorbidity, functional status, stage and rate of tumour progression. Patients in receipt of these therapies do experience toxicity and may present to primary care. Common toxicities relating to the TKIs include rash, diarrhoea, mucositis, hand-foot syndrome, thyroid dysfunction, hypertension and left ventricular dysfunction and blood dyscrasias.

CONCLUSION

The incidence of kidney cancer is rising with a lifetime risk of 1 in 52 for men and 1 in 87 for women.¹ GPs will therefore encounter kidney cancer quite frequently and by maintaining a high index of clinical suspicion can help to ensure a prompt diagnosis is made. Improved survival is related to earlier disease recognition and less advanced staging at presentation.

Unexplained visible haematuria in patients over 45 years should trigger referral for suspected renal cancer, as per NICE guidance. For the subtler presentations of RCC, basic blood and urine testing, in conjunction with ultrasound, can provide the necessary information to guide secondary care referral.

The range of treatments, both surgical and systemic, is expanding and requires a coordinated approach between primary and secondary care. Therefore, fundamental knowledge on current treatment options, potential therapy toxicities and indeed where to source information (see Useful information box, right) is essential in supporting patients as they navigate an often uncertain journey following diagnosis.

Competing interests: None

REFERENCES

1 Cancer Research UK. Kidney Cancer Statistics. http://www.cancerresearchuk.org/healthprofessional/cancer-statistics/statistics-by-cancertype/kidney-cancer#heading-Zero Last accessed 24

January 2018

2 Smittenaar CR, Petersen KA, Stewart K, Moitt N. Cancer incidence and mortality projections in the UK until 2035. *Br J Cancer* 2016;15(9):1147-55 3 Escudier B, Porta C, Schmidlinger M et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Ann Oncol* 2016;27 (Supplement 5): v58-v68, doi:10.1093/annonc/mdw328

 4 European Association of Urology. Renal Cell Carcinoma update March 2016. https://uroweb.org/wpcontent/uploads/EAU-Guidelines-Renal-Cell-Carcinoma-2016.pdf Last accessed 24 January 2018
 5 El Abiad Y, Qarro A. Acute varicocele revealing renal cancer. N Engl J Med 2016;374:2075 DOI: 10.1056/NEJMicm1506668

6 British Association of Urological Surgeons and British Uro-oncology Group. Multi-disciplinary Team (MDT) Guidance for Managing Renal Cancer. May 2012 www.baus.org.uk/usefiles/pages/files/Publications/M DTRenalCancerGuidance.pdf 7 Bergström A, Hsieh CC, Lindblad P et al. Obesity and

7 Bergström A, Hsieh CC, Lindblad P et al. Obesity and renal cell cancer – a quantitative review. *Br J Cancer* 2001;85(7):984-990

8 Wong-Ho C, Dong LM, Devesa SS. Epidemiology and risk factors for kidney cancer. *Nat Rev Urol* 2010;7(5): 245-57

9 Weikert S, Boeing H, Pischon T et al. Blood pressure and risk of renal cell carcinoma in the European prospective investigation into cancer and nutrition. *Am J Epidemiol* 2008;167:438-46

10 Ljungberg B, Campbell SC, Cho HY et al. The epidemiology of renal cell carcinoma. *Eur Urol* 2011;60:615-621

11 Foshat M, Eyzaguirre E. Acquired cystic diseaseassociated renal cell carcinoma: Review of pathogenesis, morphology, ancillary tests, and clinical features. *Arch Pathol Lab Med* 2017;141(4):600-06 12 Morrison PJ, Donnelly DE, Atkinson AB, Maxwell AP. Advances in the genetics of familial renal cancer. *Oncologits* 2010;15:522-38

 13 National Institute for Health and Care Excellence.
 NGI2. Suspected cancer: Recognition and referral.
 NICE. London. 2015 (updated July 2017)
 14 Motzer RJ, Jonasch E, Agarwal N et al. Kidney Cancer, Version 2.2017, NCCN Clinical Practical Guidelines in Oncology. J Natl Compr Canc Netw

2017;15:804-34 15 National Cancer Institute. Renal Cell Cancer

Treatment (PDQ*) – Health professional version. Published 19 Jan 2018 Accessed at: www.ncbi.nlm.nih.gov/books/NBK65815/ Last accessed 25 January 2018

Ide National Institute for Health and Care Excellence.
 TA178. Bevacizumab (first-line), sorafenib (first- and second-line), sunitinib (second-line) and temsirolimus (first-line) for the treatment of advanced and/or metastatic renal cell carcinoma. NICE. London. 2009
 TAtional Institute for Health and Care Excellence.
 TA215. Pazopanib for the first-line treatment of advanced renal cell carcinoma. NICE. London. 2011
 National Institute for Health and Care Excellence.
 TA33. Axitinib for treating advanced renal cell carcinoma. NICE. London. 2011
 National Institute for Health and Care Excellence.
 TA333. Axitinib for treating advanced renal cell carcinoma after failure of prior systemic treatment.
 NICE. London. 2015

19 National Institute for Health and Care Excellence. TA417. Nivolumab for previously treated advanced renal cell carcinoma. NICE. London. 2016

See also Both visible and non-visible haematuria may herald serious disease, p11.

Useful information

Cancer Research UK

Patient information including links to clinical trials www.cancerresearchuk.org/aboutcancer/kidney-cancer

Kidney Cancer UK

Understanding kidney cancer booklet and patient helpline www.kcuk.org.uk/kidneycancer/publicat ions/

Kidney Research UK

Patient information about kidney cancer www.kidneyresearchuk.org/healthinformation/kidney-cancer

NHS choices

Patient website www.nhs.uk/conditions/kidney-cancer/

We welcome your feedback

If you wish to comment on this article or have a question for the authors, write to: **editor@thepractitioner.co.uk**