Management of heart failure with preserved ejection fraction

Webb J, Jackson T, Claridge S, Sammut E, Behar J, Carr-White G.
Management of heart failure with preserved ejection fraction.
Practitioner 2015;259 (1786):21-24
HEART FAILURE (HF) IS A COMPLEX CLINICAL SYNDROME RESULTING FROM THE IMPAIRED ability of the heart to cope with the metabolic needs of the body, resulting in breathlessness, fatigue and fluid retention. It is a progressive disease characterised by high rates of hospitalisation. The National Heart Failure Audit in England and Wales in 2012/2013 reported that 5% of all emergency hospitalisations were related to heart failure, with 11% inpatient mortality and 26% of those discharged dead within the follow-up period.3 At present HF affects nearly one million people in the UK.3,4 Studies suggest that approximately half these patients have normal, or near normal, left ventricular ejection fraction (LVEF) and are classified as heart failure with preserved ejection fraction (HFpEF).5

The prevalence of HFpEF in HF studies has been reported as 40-71%.1 This variation reflects both the current challenges in accurately diagnosing HFpEF and that different LVEF cutoffs (varying from 40% to over 55%) have been used.

In 2007, the average number of patients on a practice list in England was 6,487 which would equate to around 50 patients with HFpEF per practice. However, the true overall prevalence of HFpEF in the community has been estimated to be higher, so each practice could have up to 200 patients with HFpEF.6 This means it is important for all clinicians to consider HFpEF when seeing patients with signs and symptoms of heart failure.6

‘Patients with heart failure and depression have increased morbidity and mortality’

Patients with heart failure and depression have increased morbidity and mortality.7,8 Patients often have overlapping comorbidities and it has only recently been convincingly demonstrated that HFpEF represents more than the sum of all its comorbidities and is a condition in its own right.9

HFpEF is likely to be caused by: diastolic dysfunction, impaired systolic function on exercise, abnormal ventricular-arterial coupling, inflammation and endothelial dysfunction, chronotropic incompetence, altered myocardial

What are the risk factors for HFpEF?

What should diagnosis be confirmed?

What are the management approaches?
energetics and peripheral skeletal muscle metabolism and perfusion, pulmonary hypertension and renal insufficiency.8

HFpEF was initially referred to as diastolic HF as opposed to systolic HF that corresponded with HFrEF (heart failure with reduced ejection fraction). However, diastolic dysfunction has been shown not to be unique to HFpEF. Furthermore, newer imaging techniques have confirmed that systolic function in HFpEF patients is not completely normal, with reduced long axis function and extensive but subtle changes on exercise. HFpEF is the accepted name, although preserved implies that the left ventricular ejection fraction was known previously and is unchanged, which is not always the case.9

RISK FACTORS

Large epidemiological studies have found that HFpEF patients are likely to be older women with a history of hypertension.5,11,12 Other cardiovascular risk factors, such as diabetes mellitus, atrial fibrillation and coronary artery disease are prevalent in the HFpEF population, see figure 1, p21. Non-cardiovascular comorbidities, renal impairment, chronic lung disease, liver disease, hypothyroidism and anaemia, consistent with an elderly population have also been reported.13

PRESENTATION

Clinical symptoms and signs in HFpEF are often nonspecific although the primary symptoms of HF are fatigue, breathlessness and fluid retention.

Patients often find their exercise tolerance is limited by fatigue and breathlessness. Fluid overload can result in weight gain, peripheral oedema, or swelling of the ankles and legs, as well as abdominal congestion, resulting in impaired absorption and also renal dysfunction.

Depression is common in heart failure, with a prevalence of 20-40%.4 Patients with heart failure and depression have been found to have increased morbidity and mortality with impaired quality of life, when compared with heart failure patients without depression.5,6 The New York Heart Association (NYHA) functional classification provides an easy way to classify patients depending on their physical limitations, see table 1, above.7 Criticisms of the classification system focus on difficulties defining the difference between slight and marked limitation18 with low reproducibility values between clinicians.9 However, the NYHA classification system provides a rapid assessment of exercise capacity that is easy to communicate and has been well documented to predict prognosis.20, 21

ASSESSMENT

Despite significant advances in medical imaging, the cornerstone in the assessment of HF remains a thorough medical history and physical examination, see figure 2, below. There is still no single diagnostic test for HFpEF. The medical history needs to include
Table 2

Diagnostic criteria in HFpEF

<table>
<thead>
<tr>
<th>European Society of Cardiology, 2012</th>
<th>American College of Cardiology/American Heart Association, 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Symptoms and signs typical of heart failure</td>
<td>1 Symptoms and signs typical of heart failure</td>
</tr>
<tr>
<td>2 Normal, or only mildly reduced LVEF</td>
<td>2 Normal LVEF</td>
</tr>
<tr>
<td>3 Relevant structural heart disease</td>
<td>3 No significant valvular abnormalities on echocardiography</td>
</tr>
<tr>
<td>left ventricular hypertrophy, atrial enlargement</td>
<td></td>
</tr>
<tr>
<td>4 ± diastolic dysfunction</td>
<td></td>
</tr>
</tbody>
</table>

previous cardiac disease such as coronary artery disease and atrial fibrillation, as well as previous episodes of hospitalisation. Other cardiovascular risk factors and family history should be documented.

The duration of symptoms is relevant as are the extent of symptoms such as chest pain, breathlessness and exercise limitation. It is useful to classify patients according to the NYHA functional assessment. Rapid weight gain is suggestive of fluid overload, whereas anorexia, weight loss and early satiety suggest cardiac cachexia that is associated with an adverse prognosis.

‘Rapid weight gain is suggestive of fluid overload’

The physical examination needs to include the patient’s BMI and weight, heart rate and rhythm, lying and standing blood pressure and auscultation to rule out valvular disease and pulmonary congestion.

Estimating the jugular venous pressure and the presence of peripheral oedema allows assessment of the patient’s volume status. Cool extremities indicate poor cardiac output and perfusion. Hepatomegaly and ascites both indicate fluid overload.

CONFIRMING DIAGNOSIS

Recent guidelines have been published to improve the diagnosis of HFpEF, see table 2, above.[1,2] Echocardiography is clearly critical in the diagnosis of HFpEF, but not all GPs have access to this and most have to refer patients to their local cardiology department.

Before referral an ECG can be performed to check for heart rate and rhythm, as well as any suggestion of previous ischaemic disease.

mortality rates in HFpEF.[5,6] In clinical trials, sudden death and HF death are the leading causes of cardiovascular death.[26] Survival has improved in HFrEF over the past 10 to 20 years although no change has been observed for HFpEF patients.

MANAGEMENT

Given the uncertainty in diagnoses and pathophysiology it is not surprising that there have been no evidence-based HFpEF therapies beyond treatment directed at comorbidities and diuretics for fluid overload.[6] Several large-scale trials have demonstrated neutral results although there were no universal entry criteria and so different populations have been studied. Recent heart failure guidelines have concluded that ‘no treatment has yet been shown convincingly to reduce mortality or morbidity in patients with HFpEF’.

‘Anorexia, weight loss and early satiety suggest cardiac cachexia’

The recommendations include managing breathlessness and fluid overload with diuretics, managing heart rate control and treating myocardial ischaemia and hypertension.[24]

Drug therapy

Loop diuretics and thiazides are effective for the rapid relief of symptoms and may improve quality of life, although do not reduce morbidity or mortality.[27] There is some evidence that thiazide diuretics may reduce morbidity and mortality in older hypertensive patients.[28,29] There is no such evidence for loop diuretics. Identifying and treating depression is important in these patients.

Box 1

NT-proBNP testing

BNP or its amino-terminal cleavage equivalent (NT-proBNP) is generated by cardiomyocytes in the context of numerous triggers, most notably myocardial stretch. Assays for both BNP and NT-proBNP are increasingly used to establish the presence and severity of heart failure. Either can be used in patient care settings as long as their respective absolute values are not used interchangeably.[1] The value of natriuretic peptide testing is particularly significant when the aetiology of dyspnoea is unclear, and if BNP is normal it is unlikely that the patient has heart failure.

Patients with HFpEF have lower levels of BNP than HFrEF patients. However, for a given BNP level, the prognosis (risk of all-cause mortality and heart failure hospitalisation) is similar in both HFpEF and HFrEF patients.[2]
Heart failure affects nearly one million people in the UK. Half of these patients have normal, or near normal, left ventricular ejection fraction and are classified as heart failure with preserved ejection fraction (HFpEF).

Newer imaging techniques have confirmed that systolic function in HFpEF patients is not completely normal, with reduced long axis function and extensive but subtle changes on exercise. Patients are likely to be older women with a history of hypertension. Other cardiovascular risk factors, such as diabetes mellitus, atrial fibrillation and coronary artery disease are prevalent in the HFpEF population.

Clinical symptoms and signs in HFpEF are often nonspecific although the primary symptoms are breathlessness, fatigue and fluid retention. Fluid overload can result in weight gain, peripheral oedema, or swelling of the ankles and legs, as well as abdominal congestion.

Depression is common in heart failure, with a prevalence of 20-40%. Patients with heart failure and depression have been found to have increased morbidity and mortality with impaired quality of life when compared with heart failure patients without depression. Identifying and treating depression is important in these patients.

There is still no single diagnostic test for HFpEF and the cornerstone in the assessment remains a thorough medical history and physical examination. The duration and extent of the symptoms are relevant and it is useful to classify patients according to the NYHA functional assessment. Rapid weight gain is suggestive of fluid overload, whereas anaemia, weight loss and early satiety suggest cardiac cachexia that is associated with an adverse prognosis.

Symptoms and signs of heart failure are central to the diagnosis of HFpEF. Currently no treatments have convincingly shown to reduce mortality or morbidity in these patients with comparable outcome data to HFrEF.

Improved characterisation of HFpEF will enable future trials to define inclusion criteria, ensuring that similar patients are being studied.

CONCLUSION

The prevalence of HF is expected to increase by 25% by 2030 and approximately half of all HF patients have HFpEF.

HFpEF represents a collection of different conditions and current imaging and physiological research is seeking to understand this better and improve characterisation.

‘Loop diuretics and thiazides are effective for the rapid relief of symptoms’

Symptoms and signs of heart failure are central to the diagnosis of HFpEF. Currently no treatments have convincingly shown to reduce mortality or morbidity in these patients with comparable outcome data to HFrEF.

Improved characterisation of HFpEF will enable future trials to define inclusion criteria, ensuring that similar patients are being studied.

REFERENCES

10. Sanderson JE, HFNEF, HFPEF, HF-PFEF or DHF. What is in an acronym? JACC Heart Fail 2014;2(1):155-4
16. Gottlieb SS, Kop WJ, Ellis SJ et al. Relation of depression to severity of heart failure (from Heart Failure And a Controlled Trial Investigating Outcomes of Exercise Training (HF-ACTION)). Am J Cardiol 2009;103(9):628-9
20. Kirk V, Bay M, Parner J et al. N-terminal proBNP and mortality in hospitalised patients with heart failure and preserved vs. reduced systolic function: data from the prospective Copenhagen Hospital Heart Failure Study (Copenhagen Heart failure 2004;6(5):335-40
23. McMurray JJ, Adamopoulos S, Anker SD et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 2012;43(14):1893-6
24. M Manatou M. In the Group in Chronic Cardiac Heart-Failure (MAGGIC). The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Eur Heart J 2012; 33(14):1755-7

There is still no single diagnostic test for HFpEF and the cornerstone in the assessment remains a thorough medical history and physical examination. The duration and extent of the symptoms are relevant and it is useful to classify patients according to the NYHA functional assessment. Rapid weight gain is suggestive of fluid overload, whereas anaemia, weight loss and early satiety suggest cardiac cachexia that is associated with an adverse prognosis.

Physical examination should include the patient’s BMI and weight, heart rate and rhythm, lying and standing blood pressure and auscultation to rule out valvular disease and pulmonary congestion. Estimating the jugular venous pressure and the presence of peripheral oedema allows assessment of the patient’s volume status.

Patients with heart failure should be referred to heart failure nurses and have follow-up with local cardiology services as these have both been shown to reduce mortality. Breathlessness and fluid overload should be managed with diuretics, heart rate controlled and myocardial ischaemia and hypertension treated. Loop diuretics and thiazides are effective for the rapid relief of symptoms and may improve quality of life, although they do not reduce morbidity or mortality. There is some evidence that thiazide diuretics may reduce morbidity and mortality in older hypertensive patients.

We welcome your feedback
If you would like to comment on this article or have a question for the authors, write to: editor@thepractitioner.co.uk

thepractitioner.co.uk